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Summary

Quantitative modeling of human brain activity can provide
crucial insights about cortical representations [1, 2] and

can form the basis for brain decoding devices [3–5]. Recent
functional magnetic resonance imaging (fMRI) studies have

modeled brain activity elicited by static visual patterns and
have reconstructed these patterns from brain activity [6–8].

However, blood oxygen level-dependent (BOLD) signals
measured via fMRI are very slow [9], so it has been difficult

to model brain activity elicited by dynamic stimuli such as
natural movies. Here we present a new motion-energy [10,

11] encoding model that largely overcomes this limitation.
Themodel describes fast visual information and slow hemo-

dynamics by separate components. We recorded BOLD
signals in occipitotemporal visual cortex of human subjects

who watched natural movies and fit the model separately
to individual voxels. Visualization of the fit models reveals

how early visual areas represent the information in movies.

To demonstrate the power of our approach, we also con-
structed a Bayesian decoder [8] by combining estimated

encoding models with a sampled natural movie prior. The
decoder provides remarkable reconstructions of the viewed

movies. These results demonstrate that dynamic brain
activity measured under naturalistic conditions can be de-

coded using current fMRI technology.

Results

Many of our visual experiences are dynamic: perception, visual
imagery, dreaming, and hallucinations all change continuously
over time, and these changes are often the most compelling
and important aspects of these experiences. Obtaining a
quantitative understanding of brain activity underlying these
dynamic processes would advance our understanding of
visual function. Quantitative models of dynamic mental events
could also have important applications as tools for psychiatric
diagnosis and as the foundation of brain machine interface
devices [3–5].

Modeling dynamic brain activity is a difficult technical prob-
lem. The best tool available currently for noninvasive mea-
surement of brain activity is functional magnetic resonance
imaging (fMRI), which has relatively high spatial resolution
[12, 13]. However, blood oxygen level-dependent (BOLD)
signals measured using fMRI are relatively slow [9], especially
when compared to the speed of natural vision and many other

mental processes. It has therefore been assumed that fMRI
data would not be useful for modeling brain activity evoked
during natural vision or by other dynamic mental processes.
Here we present a new motion-energy [10, 11] encoding

model that largely overcomes this limitation. The model
separately describes the neural mechanisms mediating visual
motion information and their coupling to much slower hemo-
dynamic mechanisms. In this report, we first validate this en-
coding model by showing that it describes how spatial and
temporal information are represented in voxels throughout
visual cortex.We then use a Bayesian approach [8] to combine
estimated encoding models with a sampled natural movie
prior, in order to produce reconstructions of natural movies
from BOLD signals.
We recorded BOLD signals from three human subjects while

they viewedaseries of color naturalmovies (20� 320� at 15Hz).
A fixation task was used to control eye position. Two separate
data sets were obtained from each subject. The training data
set consisted of BOLD signals evoked by 7,200 s of color
natural movies, where each movie was presented just once.
These data were used to fit a separate encoding model for
each voxel located in posterior and ventral occipitotemporal
visual cortex. The test data set consisted of BOLD signals
evoked by 540 s of color natural movies, where each movie
was repeated ten times. These data were used to assess the
accuracy of the encoding model and as the targets for movie
reconstruction. Because the movies used to train and test
models were different, this approach provides a fair and objec-
tive evaluation of the accuracy of the encoding and decoding
models [2, 14].
BOLD signals recorded from each voxel were fit separately

using a two-stage process. Natural movie stimuli were first
filtered by a bank of neurally inspired nonlinear units sensitive
to local motion-energy [10, 11]. L1-regularized linear regres-
sion [15, 16] was then used to fit a separate hemodynamic
coupling term to each nonlinear filter (Figure 1; see also Sup-
plemental Experimental Procedures available online). The
regularized regression approach used here was optimized to
obtain good estimates even for computational models con-
taining thousands of regressors. In this respect, our approach
differs from the regression procedures used in many other
fMRI studies [17, 18].
To determine how much motion information is available in

BOLD signals, we compared prediction accuracy for three
different encoding models (Figures 2A–2C): a conventional
static model that includes no motion information [8, 19],
a nondirectional motion model that represents local motion
energy but not direction, and a directional model that repre-
sents both local motion energy and direction. Each of these
models was fit separately to every voxel recorded in each
subject, and the test data were used to assess prediction
accuracy for each model. Prediction accuracy was defined
as the correlation between predicted and observed BOLD
signals. The averaged accuracy across subjects and voxels
in early visual areas (V1, V2, V3, V3A, and V3B) was 0.24,
0.39, and 0.40 for the static, nondirectional, and directional
encoding models, respectively (Figures 2D and 2E; see
Figure S1A for subject- and area-wise comparisons). This*Correspondence: gallant@berkeley.edu
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difference in prediction accuracy was significant (p < 0.0001,
Wilcoxon signed-rank test). An earlier study showed that the
static model tested here recovered much more information
from BOLD signals than had been obtained with any previous
model [8, 19]. Nevertheless, both motion models developed
here provide far more accurate predictions than are obtained
with the static model. Note that the difference in prediction
accuracy between the directional and nondirectional motion
models, though significant, was small (Figure 2E; Figure S1A).
This suggests that BOLD signals convey spatially localized
but predominantly nondirectional motion information. These
results show that the motion-energy encoding model predicts
BOLD signals evoked by novel natural movies.

To further explore what information can be recovered from
these data, we estimated the spatial, spatial frequency, and
temporal frequency tuning of the directional motion-energy
encoding model fit to each voxel. The spatial receptive fields
of individual voxels were spatially localized (Figures 2F and
2G, left) and were organized retinotopically (Figures 2H and
2I), as reported in previous fMRI studies [12, 19–23]. Voxel-
based receptive fields also showed spatial and temporal
frequency tuning (Figures 2F and 2G, right), as reported in
previous fMRI studies [24, 25].

To determine how motion information is represented in
human visual cortex, we calculated the optimal speed for
each voxel by dividing the peak temporal frequency by the
peak spatial frequency. Projecting the optimal speed of the
voxels onto a flattened map of the cortical surface (Figure 2J)
revealed a significant positive correlation between eccentricity
and optimal speed: relatively more peripheral voxels were
tuned for relatively higher speeds. This pattern was observed
in areas V1, V2, and V3 and for all three subjects (p < 0.0001,
t test for correlation coefficient; see Figure S1B for subject-
and area-wise comparisons). To our knowledge, this is the first
evidence that speed selectivity in human early visual areas
depends on eccentricity, though a consistent trend has been
reported in human behavioral studies [26–28] and in neuro-
physiological studies of nonhuman primates [29, 30]. These
results show that the motion-energy encoding model de-
scribes tuning for both spatial and temporal information at
the level of single voxels.

To further characterize the temporal specificity of the
estimated motion-energy encoding models, we used the test
data to estimate movie identification accuracy. Identification
accuracy [7, 19] measures how well a model can correctly

associate an observed BOLD signal pattern with the specific
stimulus that evoked it. Our motion-energy encoding model
could identify the specific movie stimulus that evoked an
observed BOLD signal 95% of the time (464 of 486 volumes)
within 6 one volume (1 s; subject S1; Figures 3A and 3B).
This is far above what would be expected by chance (<1%).
Identification accuracy (within 6 one volume) was >75% for
all three subjects even when the set of possible natural movie
clips included 1,000,000 separate clips chosen at random from
the internet (Figure 3C). This result demonstrates that the
motion-energy encoding model is both valid and temporally
specific. Furthermore, it suggests that the model might
provide good reconstructions of natural movies from brain
activity measurements [5].
We used a Bayesian approach [8] to reconstruct movies

from the evoked BOLD signals (see also Figure S2). We esti-
mated the posterior probability by combining a likelihood
function (given by the estimated motion-energy model; see
Supplemental Experimental Procedures) and a sampled
natural movie prior. The sampled natural movie prior consists
of w18,000,000 s of natural movies sampled at random from
the internet. These clips were assigned uniform prior proba-
bility (and consequently all other clips were assigned zero prior
probability; note also that none of the clips in the prior were
used in the experiment). Furthermore, to make decoding
tractable, reconstructions were based on 1 s clips (15 frames),
using BOLD signals with a delay of 4 s. In effect, this procedure
enforces an assumption that the spatiotemporal stimulus that
elicited each measured BOLD signal must be one of the movie
clips in the sampled prior.
Figure 4 shows typical reconstructions of natural movies

obtained using the motion-energy encoding model and the
Bayesian decoding approach (see Movie S1 for the corre-
sponding movies). The posterior probability was estimated
across the entire sampled natural movie prior separately for
each BOLD signal in the test data. The peak of this posterior
distribution was the conventional maximum a posteriori
(MAP) reconstruction [8] for each BOLD signal (see second
row in Figure 4). When the sampled natural movie prior con-
tained clips similar to the viewed clip, theMAP reconstructions
were good (e.g., the close-up of a human speaker shown in Fig-
ure 4A). However, when the prior contained no clips similar to
the viewed clip, the reconstructions are poor (e.g., Figure 4B).
This likely reflects both the limited size of the sampled natural
movie prior and noise in the fMRI measurements. One way to
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Figure 1. Schematic Diagram of the Motion-Energy

Encoding Model

(A) Stimuli pass first through a fixed set of nonlinear

spatiotemporal motion-energy filters (shown in detail in

B) and then through a set of hemodynamic response

filters fit separately to each voxel. The summed output

of the filter bank provides a prediction of BOLD signals.

(B) The nonlinear motion-energy filter bank consists of

several filtering stages. Stimuli are first transformed

into the Commission Internationale de l’Éclairage L*A*

B* color space, and the color channels are stripped off.

Luminance signals then pass through a bank of 6,555

spatiotemporal Gabor filters differing in position, orien-

tation, direction, spatial, and temporal frequency (see

Supplemental Experimental Procedures for details).

Motion energy is calculated by squaring and summing

Gabor filters in quadrature. Finally, signals pass through

a compressive nonlinearity and are temporally down-

sampled to the fMRI sampling rate (1 Hz).
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achieve more robust reconstructions without enlarging the
prior is to interpolate over the sparse samples in the prior.
We therefore created an averaged high posterior (AHP) re-
construction by averaging the 100 clips in the sampled natural
movie prior that had the highest posterior probability (see also
Figure S2; note that the AHP reconstruction can be viewed as
a Bayesian version of bagging [31]). The AHP reconstruction
captures the spatiotemporal structure within a viewed clip
even when it is completely unique (e.g., the spreading of an
inkblot from the center of the visual field shown in Figure 4B).

To quantify reconstruction quality, we calculated the corre-
lation between the motion-energy content of the original
movies and their reconstructions (see Supplemental Experi-
mental Procedures). A correlation of 1.0 indicates perfect
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Figure 2. The Directional Motion-Energy Model Captures

Motion Information

(A) Top: the static encoding model includes only Gabor

filters that are not sensitive to motion. Bottom: prediction

accuracy of the static model is shown on a flattened map

of the cortical surface of one subject (S1). Prediction

accuracy is relatively poor.

(B) The nondirectional motion-energy encoding model

includes Gabor filters tuned to a range of temporal

frequencies, but motion in opponent directions is pooled.

Prediction accuracy of this model is better than the static

model.

(C) The directional motion-energy encoding model in-

cludes Gabor filters tuned to a range of temporal fre-

quencies and directions. This model provides the most

accurate predictions of all models tested.

(D and E) Voxel-wise comparisons of prediction accuracy

between the three models. The directional motion-energy

model performs significantly better than the other two

models, although the difference between the nondirec-

tional and directional motion models is small. See also

Figure S1 for subject- and area-wise comparisons.

(F) The spatial receptive field of one voxel (left) and its

spatial and temporal frequency selectivity (right). This

receptive field is located near the fovea, and it is high-

pass for spatial frequency and low-pass for temporal

frequency. This voxel thus prefers static or low-speed

motion.

(G) Receptive field for a second voxel. This receptive field

is located lower periphery, and it is band-pass for spatial

frequency and high-pass for temporal frequency. This

voxel thus prefers higher-speed motion than the voxel

in (F).

(H) Comparison of retinotopic angle maps estimated

using the motion-energy encoding model (top) and

conventional multifocal mapping (bottom) on a flattened

cortical map [47]. The angle maps are similar, even

though they were estimated using independent data

sets and methods.

(I) Comparison of eccentricity maps estimated as in (H).

The maps are similar except in the far periphery, where

the multifocal mapping stimulus was coarse.

(J) Optimal speed projected on to a flattened map as in

(H). Voxels near the fovea tend to prefer slow-speed

motion, whereas those in the periphery tend to prefer

high-speed motion. See also Figure S1B for subject-

wise comparisons.

reconstruction of the spatiotemporal energy
in the original movies, and a correlation of
0.0 indicates that the movies and their recon-
struction are spatiotemporally uncorrelated.
The results for both MAP and AHP reconstruc-
tions are shown in Figure 4D. In both cases,

reconstruction accuracy was significantly higher than chance
(p < 0.0001, Wilcoxon rank-sum test; see Supplemental Exper-
imental Procedures). Furthermore, AHP reconstructions were
significantly better than MAP reconstructions (p < 0.0001,
Wilcoxon signed-rank test). Although still crude (motion-
energy correlation w 0.3), these results validate our general
approach to reconstruction and demonstrate that the AHP
estimate improves reconstruction over the MAP estimate.

Discussion

In this study, we developed an encoding model that pre-
dicts BOLD signals in early visual areas with unprecedented
accuracy. By using this model in a Bayesian framework, we
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provide the first reconstructions of natural movies from human
brain activity. This is a critical step toward the creation of brain
reading devices that can reconstruct dynamic perceptual
experiences. Our solution to this problem rests on two key
innovations. The first is a new motion-energy encoding model
that is optimized for use with fMRI and that aims to reflect the
separate contributions of the underlying neuronal population
and hemodynamic coupling (Figure 1). This encoding model
recovers fine temporal information from relatively slow BOLD

signals. The second is a sampled natural movie prior that is
embedded within a Bayesian decoding framework. This
approach provides a simple method for reconstructing spatio-
temporal stimuli from the sparsely sampled and slow BOLD
signals.
Our results provide the first evidence that there is a positive

correlation between eccentricity and optimal speed in human
early visual areas. This provides a functional explanation for
previous behavioral studies indicating that speed sensitivity
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Figure 3. Identification Analysis

(A) Identification accuracy for one subject (S1). The test data in our experiment consisted of 486 volumes (s) of BOLD signals evoked by the test movies. The

estimatedmodel yielded 486 volumes of BOLD signals predicted for the samemovies. The brightness of the point in themth column and nth row represents

the log-likelihood (see Supplemental Experimental Procedures) of the BOLD signals evoked at the mth second given the BOLD signal predicted at the nth

second. The highest log-likelihood in each column is designated by a red circle and thus indicates the choice of the identification algorithm.

(B) Temporal offset between the correct timing and the timing identified by the algorithm for the same subject shown in (A). The algorithm was correct to

within 6 one volume (s) 95% of the time (464 of 486 volumes); chance performance is <1% (3 of 486 volumes; i.e., three volumes centered at the correct

timing).

(C) Scaling of identification accuracy with set size. To understand how identification accuracy scales with size of stimulus set, we enlarged the identification

stimulus set to include additional stimuli drawn from a natural movie database (which was not actually used in the experiment). For all three subjects, iden-

tification accuracy (within 6 one volume) was >75% even when the set of potential movies included 1,000,000 clips. This is far above chance (gray dashed

line).
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Figure 4. Reconstructions of Natural Movies from BOLD Signals

(A) The first (top) row shows three frames from a natural movie used in the experiment, taken 1 s apart. The second through sixth rows show frames from the

five clips with the highest posterior probability. The maximum a posteriori (MAP) reconstruction is shown in the second row. The seventh (bottom) row

shows the averaged high posterior (AHP) reconstruction. The MAP provides a good reconstruction of the second and third frames, whereas the AHP

provides more robust reconstructions across frames.

(B and C) Additional examples of reconstructions, in the same format as (A).

(D) Reconstruction accuracy (correlation in motion-energy; see Supplemental Experimental Procedures) for all three subjects. Error bars indicate61 stan-

dard error of the mean across 1 s clips. Both the MAP and AHP reconstructions are significant, though the AHP reconstructions are significantly better than

the MAP reconstructions. Dashed lines show chance performance (p = 0.01). See also Figure S2.
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depends on eccentricity [26–28]. This systematic variation in
optimal speed across the visual field may be an adaptation
to the nonuniform distribution of speed signals induced by
selective foveation in natural scenes [32]. From the perspec-
tive of decoding, this result suggests that we might further
optimize reconstruction by including eccentricity-dependent
speed tuning in the prior.

We found that a motion-energy model that incorporates
directional motion signals was only slightly better than amodel
that does not include direction. We believe that this likely
reflects limitations in the spatial resolution of fMRI recordings.
Indeed, a recent study reported that hemodynamic signals
were sufficient to visualize a columnar organization of motion
direction in macaque area V2 [33]. Future fMRI experiments
at higher spatial or temporal resolution [34, 35] might therefore
be able to recover clearer directional signals in human visual
cortex.

In preliminary work for this study, we explored several en-
coding models that incorporated color information explicitly.
However, we found that color information did not improve
the accuracy of predictions or identification beyond what
could be achieved with models that include only luminance
information. We believe that this reflects the fact that lumi-
nance and color borders are often correlated in natural scenes
([36, 37], but see [38]). (Note that when isoluminant, monochro-
matic stimuli are used, color can be reconstructed from
evokedBOLD signals [39].) The correlation between luminance
and color information in natural scenes has an interesting side
effect: our reconstructions tended to recover color borders
(e.g., borders between hair versus face or face versus body),
even though the encoding model makes no use of color infor-
mation. This is a positive aspect of the sampled natural movie
prior and provides additional cues to aid in recognition of re-
constructed scenes (see also [40]).

We found that the quality of reconstruction could be
improved by simply averaging around the maximum of the
posterior movies. This suggests that reconstructions might
be further improved if the number of samples in the prior is
much larger than the one used here. Likelihood estimation
(and thus reconstruction) would also improve if additional
knowledge about the neural representation of movies was
used to construct better encoding models (e.g., [41]).

In a landmark study, Thirion et al. [6] first reconstructed
static imaginary patterns from BOLD signals in early visual
areas. Other studies have decoded subjective mental states,
such as the contents of visual workingmemory [42], or whether
subjects are attending to one or another orientation or direc-
tion [3, 43]. The modeling framework presented here provides
the first reconstructions of dynamic perceptual experiences
from BOLD signals. Therefore, this modeling framework might
also permit reconstruction of dynamic mental content such as
continuous natural visual imagery. In contrast to earlier studies
that reconstruct visual patterns defined by checkerboard
contrast [6, 7], our framework could potentially be used to
decode involuntary subjective mental states (e.g., dreaming
or hallucination), though it would be difficult to determine
whether the decoded content was accurate. One recent study
showed that BOLD signals elicited by visual imagery are more
prominent in ventral-temporal visual areas than in early visual
areas [44]. This finding suggests that a hybrid encoding model
that combines the structural motion-energy model developed
here with a semantic model of the form developed in previous
studies [8, 45, 46] could provide even better reconstructions of
subjective mental experiences.

Experimental Procedures

Stimuli

Visual stimuli consisted of color natural movies drawn from the Apple Quick-

Time HD gallery (http://trailers.apple.com/) and YouTube (http://www.

youtube.com/; see the list of movies in Supplemental Experimental Proce-

dures). The original high-definition movies were cropped to a square

and then spatially downsampled to 512 3 512 pixels. Movies were then

clipped to 10–20 s in length, and the stimulus sequence was created by

randomly drawing movies from the entire set. Movies were displayed using

a VisuaStim LCD goggle system (20� 3 20� at 15 Hz). A colored fixation spot

(4 pixels or 0.16� square) was presented on top of themovie. The color of the

fixation spot changed three times per second to ensure that it was visible

regardless of the color of the movie.

MRI Parameters

The experimental protocol was approved by the Committee for the Protec-

tion of Human Subjects at University of California, Berkeley. Functional

scans were conducted using a 4 Tesla Varian INOVA scanner (Varian, Inc.)

with a quadrature transmit/receive surface coil (Midwest RF). Scans were

obtained using T2*-weighted gradient-echo EPI: TR = 1 s, TE = 28 ms, flip

angle = 56�, voxel size = 2.0 3 2.0 3 2.5 mm3, FOV = 128 3 128 mm2. The

slice prescription consisted of 18 coronal slices beginning at the posterior

pole and covering the posterior portion of occipital cortex.

Data Collection

Functional MRI scans were made from three human subjects, S1 (author

S.N., age 30), S2 (author T.N., age 34), and S3 (author A.T.V., age 23). All

subjects were healthy and had normal or corrected-to-normal vision. The

training data were collected in 12 separate 10 min blocks (7,200 s total).

The training movies were shown only once each. The test data were

collected in nine separate 10 min blocks (5,400 s total) consisting of 9 min

movies repeated ten times each. To minimize effects from potential adapta-

tion and long-term drift in the test data, we divided the 9 min movies into

1 min chunks, and these were randomly permuted across blocks. Each

test block was thus constructed by concatenating ten separate 1 min

movies. All data were collected across multiple sessions for each subject,

and each session contained multiple training and test blocks. The training

and test data sets used different movies.

Additional methods can be found in Supplemental Experimental

Procedures.

Supplemental Information

Supplemental Information includes two figures, Supplemental Experimental

Procedures, and one movie and can be found with this article online at

doi:10.1016/j.cub.2011.08.031.
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Figure S1. Encoding Model Details across Visual Areas and Subjects 

(A) Prediction accuracy across visual areas and subjects. In the main text we showed that the 

directional motion model provides the most accurate predictions of BOLD signals to novel 

natural movies, and the static model provides the worst predictions, but that the difference in 

performance of the directional and non-directional models is minimal. We repeated the analysis 

to determine whether this pattern holds for individual visual areas and individual subjects. These 

bar graphs show prediction performance for the three models across five visual areas, for each of 

the three subjects. Error bars indicate ± 1 SEM across voxels (bootstrap procedure [48]). The 

directional and non-directional motion models perform better than the static model in every case. 

The best overall predictions for all three subjects (p < 0.0001, Wilcoxon rank-sum test) are 

obtained in area V1. This likely reflects the fact that the core component of the motion-energy 

model is a V1 complex cell model [10, 11].  

(B) Speed selectivity depends on eccentricity. In the main body of the paper we showed how 

speed selectivity is distributed across the cortical flat map (see Figure 2J). Those data indicated 

that optimal speed depends on eccentricity. Here the same data are shown as the average optimal 

speed across voxels in visual areas (V1, V2 and V3 shown in different colors), binned in 

increments of two degrees of eccentricity for each of the three subjects examined in this 



experiment. Optimal speed is expressed as the optimal temporal frequency divided by the 

optimal spatial frequency. (Voxels for which prediction accuracy of the directional motion-

energy model was p > 0.01 or where the optimal spatial frequency was 0 cycles/degree have been 

omitted.) Error bars indicate ± 1 SEM across voxels for each bin (bootstrap procedure [48]). In 

all three subjects and all three visual areas there is a significant positive correlation between 

eccentricity and optimal speed (p < 0.0001, t test for correlation coefficient). Because high 

temporal frequency signals in natural movies have low energy, we estimated temporal frequency 

selectivity only up to 4Hz. This could bias estimates of the optimal speed toward lower values, 

especially for voxels in the visual periphery that are high-pass for temporal frequency (e.g., 

Figure 2G).  



 
 

 

Figure S2. Schematic Diagram of Decoding Algorithm 

(A) Reconstruction is a form of decoding in which the BOLD signals measured from a set of 

voxels are used to recreate a picture of the unknown stimulus. Here the stimulus was an 

unknown movie clip, and BOLD signals were recorded from a set of voxels in visual cortex.  

(B) The reconstruction algorithm exploits the fact that a posterior probability is proportional to a 

likelihood times a prior probability [8]. We use a sampled natural movie prior, consisting of a 

database of ~18 million one-second movie clips drawn at random from YouTube 

(http://www.youtube.com; left column). To obtain the posterior, each clip in the sampled prior is 

first processed using the motion-energy encoding models fit to each voxel (middle column), and 

the predicted signals are compared to the measured signals evoked by the unknown stimulus 

(right column). The posterior rank of each of the clips in the sampled prior is simply the 

likelihood of the observed response given the clip (see Likelihood Estimation in Supplemental 

Information).  

(C) Thirty clips from the sampled prior that had the highest posterior, given a pattern of 

responses evoked by the unknown clip. The clips are sorted in descending order from the highest 

posterior probability (top left) to the 30th (bottom right). The single clip with the highest 

posterior probability is the maximum a posteriori (MAP) reconstruction [8].  

(D) Because the empirical prior is a sparse and relatively small sample of all possible natural 

movies, the MAP reconstruction may be poor. One way to simulate a denser sampling of the 



posterior is to simply average over the clips near the peak of the posterior. Here averages over 1-

100 clips are shown. Note that to equalize the contributions from each clip we prenormalized the 

pixel values of each clip to have a unit standard deviation before averaging. After averaging we 

post-normalized the averaged clip so that its mean and standard deviation were equal to those of 

the average of the top 100 clips. We found in practice that averaging over 100 clips near the peak 

of the posterior yields robust and stable reconstructions. We call this the averaged high posterior 

(AHP) reconstruction (Figure 4). 

 



Supplemental Experimental Procedures 

 

List of Movies Used as Stimuli 

To minimize potential biases in the stimulus set, the movies used for the experiment were drawn 

from a wide variety of different sources. The bulk of the movies were taken from trailers for the 

following movies: “Australia”, “Bolt”, “Bride Wars”, “Changeling”, “Duplicity”, “Fuel”, “Hotel 

for Dogs”, “Ink Heart”, “King Lines”, “Mall Cop”, “Madagascar 2”, “Pink Panther 2”, “Proud 

American”, “Role Models”, “Shark Water”, “Star Trek”, “The Tale of Despereaux”, “Warren 

Miller Higher Ground” and “Yes Man”. Additional movies were taken from following libraries: 

“Artbeats HD”, “BBC Motion Gallery”, “Mammoth HD” and “The Macaulay Library”. These 

movies were supplemented with high-definition movies drawn from YouTube: “IGN Game of 

the Year 2008”, “JAL Boeing 747 landing Kai Tak”, “The American Recovery and 

Reinvestment Plan” and “Where the hell is Matt?”. 

 

Data Preprocessing 

BOLD signals were preprocessed as described in earlier publications [8, 19]. Briefly, motion 

compensation was performed using SPM '99 (http://www.fil.ion.ucl.ac.uk/spm), and 

supplemented by additional custom algorithms. For each 10 minute run and each individual 

voxel, drift in BOLD signals was first removed by fitting a third-degree polynomial, and signals 

were then normalized to mean 0.0 and standard deviation 1.0. Retinotopic mapping data 

collected from the same subjects in separate scan sessions was used to assign voxels to visual 

areas [47]. 

To compensate for hemodynamic transients caused by movie onset, we presented 10 

seconds of dummy movies before each 10 minute block. The dummy movies were identical to 

the final 10 seconds of movies for each block. Data collected during this initial 10 seconds were 

excluded from data analysis. 

 

Motion-Energy Encoding Model 

Our motion-energy encoding model describes BOLD signals as a linear weighted sum of local, 

nonlinear motion-energy filters. The model has two main steps (see Figure 1). Movies first pass 

through a bank of nonlinear motion-energy filters, and these transformed signals then pass 

through a bank of temporal hemodynamic response filters. The nonlinear motion-energy filter 

bank itself consists of several stages of processing (Figure 1A). To minimize the computational 

burden all movie frames are first spatially down-sampled to 96x96 pixels. The RGB pixel values 

are then converted into Commission internationale de l'éclairage (CIE) L*A*B* color space and 

color information is discarded. The luminance patterns then pass through a bank of three-

dimensional spatiotemporal Gabor wavelet filters, where two dimensions represent space and 

one represents time (see Gabor Wavelet Basis Set). The output of each quadrature pair of filters 

(i.e., filters of two orthogonal phases) is squared and summed to yield local motion-energy 

measurements [10, 11]. Motion-energy signals are then compressed by a log-transform and 

temporally down-sampled from the original frequency of the movie (15 Hz) to the sampling rate 

used to measure BOLD signals (1 Hz). Each motion-energy signal is then normalized across time 

by a Z-score transformation so that each has mean 0.0 and standard deviation 1.0. Any motion-

energy signal outliers more than 3.0 standard deviations from the mean are truncated to 3.0 in 

order to improve stability in the model estimation procedure. Finally, the output of each motion-

energy filter is temporally convolved with one specific hemodynamic response filter, and all 



channels are summed linearly. The shape of each hemodynamic response filter is fit separately 

using data from the training set (see Model Fitting). To minimize computational time we 

restricted the temporal window of the hemodynamic response filters to a period 3-6 seconds (4 

time samples) before BOLD signals. To simplify the association between each BOLD signal and 

each one second movie clip during reconstruction we refit the encoding model after shrinking the 

window so that it included only the single delay of 4 seconds (one time sample). 

Note that in theory the hemodynamic convolution could be applied before down-

sampling the filtered stimuli. Although this would reproduce more faithfully the underlying 

process that generates BOLD signals, it is computationally more efficient to perform the 

convolution after down-sampling. 

 

Gabor Wavelet Basis Set 

One important component of the motion-energy encoding model is a bank of three-dimensional 

spatiotemporal Gabor wavelet filters (Figure 1). The complete spatiotemporal Gabor wavelet 

basis set contains 6,555 separate three-dimensional Gabor filters. Each filter is constructed by 

multiplying a three-dimensional spatiotemporal (2 dimensions for space, 1 dimension for time) 

sinusoid by a three-dimensional spatiotemporal Gaussian envelope [49, 50]. Filters occur at six 

spatial frequencies (0, 2, 4, 8, 16 and 32 cycles/image), three temporal frequencies (0, 2 and 4 

Hz) and eight directions (0, 45,…, 315 degrees). The zero temporal frequency filters occur at 

only four orientations (0, 45, 90 and 135 degrees) and the zero spatial frequency filters occur 

only once (no orientation). Filters are positioned on a square grid that covers the movie screen. 

Grid spacing is determined separately for filters at each spatial frequency so that adjacent Gabor 

wavelets are separated by 3.5 standard deviations of the spatial Gaussian envelope. To facilitate 

the motion-energy computation [10, 11] each filter occurs at two quadratic phases (0 and 90 

degrees). 

Two simplified encoding models were also used in this study. The non-directional motion 

model is identical to the directional model except the outputs of anti-directional filters (e.g., 0 

degrees and 180 degrees) are summed at each spatial position, spatial orientation and temporal 

frequency. The static model includes only the subset of filters with zero temporal frequency. 

 

Model Fitting 

The motion-energy encoding model was fit to each voxel individually (Figure 1A) by means of a 

set of linear temporal filters meant to model the hemodynamic response and its coupling with 

neural activity. The encoding model for the i-th voxel can be written in linear vector form: 

 

 



where ˆ r i is the predicted BOLD signal, s is a motion-energy filtered stimuli and wi  is a linear 

weight vector that represents the motion-energy specific hemodynamic response filters. In this 

schematic each rectangle represents a vector (or scalar). Brackets indicate that matrices are 

concatenated. To capture temporal delays of the BOLD signals in the model, the vector s is 

constructed by concatenating motion-energy filtered stimulus vectors at various temporal delays. 

Here, sdx is a [1 x F] vector (F is # of filters) representing the motion-energy filtered stimuli 

shifted by dx  seconds, while s is a concatenated vector [ sd1 … sdK] where dx  (x=1…K) are the 

temporal delays of interest. The resulting vector s is of size [1 x M], where M is # of parameters 

that is given by F x K. The weight vector wi  consists of multiple linear weight vectors hi,dx, 

where each hi,dx is a weight vector for each motion-energy at the specific delay dx . 

In this study L1-regularized least squares regression procedure was used to obtain the 

linear weights wi  [15, 16]. Note that the matrix multiplication between the temporally shifted 

stimulus vector ( s) and the weight vector ( wi) is functionally equivalent to linear temporal 

convolution.  

The training data consisted of 12 separate blocks of 10 minutes each. The first 6 seconds 

of each 10 minute block were discarded. (The assignment scheme described above assumes 

implicitly that these signals are not causally related to the stimuli, so they can be discarded 

safely.) The total number of samples in the training data was therefore (600-6) x 12 = 7128. The 

test data consisted of 9 separate blocks of 1 minute each. The first 6 seconds of each test block 

were also discarded. The total number of samples in the test data was therefore (60-6) x 9 = 486. 

 

Selectivity Estimation 

Once the motion-energy encoding model was estimated for each voxel a visualization procedure 

was used to recover the estimated spatial receptive field (Figures 2F and 2G left), spatial and 

temporal frequency tuning (Figures 2F and 2G right) for each voxel. Visualization of the 

receptive field is complicated by the fact that the motion-energy encoding model consists of 

many Gabor wavelets at multiple positions and scales, along with hemodynamic delays that are 

unique to each motion-energy filter and each voxel. 

To estimate spatial selectivity we used a simulated system identification procedure in 

which each voxel was stimulated with a two-dimensional dynamic Gaussian white noise pattern, 

presented at various positions across the virtual display. The noise tiled the screen in a 17x17 

grid. The motion-energy encoding model estimated for each voxel was used to obtain predicted 

responses. Predictions to uniform gray stimuli were obtained to determine the response baseline. 

These predicted responses describe the sensitivity of each voxel to each spatial position, and 

spatial responses for each voxel were aggregated together into a two-dimensional spatial 

selectivity map for visualization (Figures 2F and 2G left). A two-dimensional Gaussian was fit to 

the spatial receptive field estimated for each voxel and the center of the fitted Gaussian gave the 

angle and eccentricity for each voxel. These values were aggregated across voxels to form angle 

and eccentricity maps (Figures 2H and 2I). Voxel data were assigned to surface vertices using 

nearest neighbor interpolation and the maps were not smoothed. Voxels whose prediction 

accuracy was p > 0.01 are shown as gray in the Figures 2H-2J. 

A similar procedure was used to estimate spatial and temporal frequency selectivity for 

each voxel (Figure 2F and 2G right). In this case the probe stimuli consisted of a set of full-field 

drifting gratings with the same set of directions, spatial and temporal frequencies as the Gabor 

wavelet basis set used in the motion-energy encoding model. Predicted responses were then 

estimated for each of the gratings. The spatiotemporal frequency selectivity map was obtained by 



averaging predicted responses across all directions. Predictions of responses to a uniform gray 

field were used to determine the response baseline. 

 

Likelihood Estimation 

For identification and recostruction analysis, we calculate likelihood of stimuli given observed 

BOLD signals and estimated voxel-wise models. Let r  denote the collection of observed BOLD 

signals ( r=[ ri, …, rN ], N is the number of voxels) and s denote motion-energy filtered stimuli 

(see Model Fitting). Assuming that BOLD signals are affected by Gaussian additive noise, the 

likelihood of the response r  given the (motion-energy filtered) stimulus s, or p(r | s) , can be 

expressed by a multivariate Gaussian distribution [1]: 

 

p(r |s) exp{(r  ̂r (s)) 1(r  ̂r (s))'}, 

 

where ˆ r (s)  is the collection of predicted BOLD signals for each of the N voxels ( ˆ r (s)=[ ˆ r i(s) , …, 

ˆ r N (s)], see model fitting in Supplemental Information) given the stimulus s and the noise 

covariance matrix  for the training samples: 

 

(r ˆ r (s))'(r ˆ r (s)) . 

 

In most cases the matrix  is singular or close to singular. In these cases it is not possible to 

calculate the inverse of  in a stable manner. To overcome this problem we used Tikhonov 

regularization (equivalently ridge regularization) to estimate the inverse [51]. 

 

Voxel Selection 

The scanning protocol produced data from about 15,000 voxels located in occipital cortex. Of 

these, we restricted our analysis to about 4,500 voxels located in the stimulated portions of visual 

areas V1, V2, V3, V3A and V3B. However, there was substantial variation in the predictive 

power of the motion-energy models obtained for these voxels. Therefore, to obtain optimal 

reconstructions for each subject we used only the 2,000 voxels that produced the most accurate 

predictions. The same voxel selection procedure was applied for identification analysis. 

We used the following procedure to estimate prediction accuracy for each voxel. First, 

90% of the samples in the training data set were used to fit a motion-energy encoding model for 

each voxel, and the remaining 10% of the training data were used to evaluate predictions of the 

fit model. The held out 10% of the data were chosen by first dividing the training data set into 50 

second blocks and then choosing blocks at random until 10% of the samples were chosen. This 

procedure ensured that prediction accuracy was estimated using movies that were independent of 

those used for reconstruction. 

 

Additional Notes on Reconstruction 

The goal of the decoding analysis is to identify or reconstruct the stimulus that was most likely to 

have evoked measured BOLD signals. The motion-energy encoding model provides a mapping 

between stimuli and evoked BOLD signals. We can use the encoding model as a likelihood 

function to invert the mapping and recover the most likely stimuli from the BOLD signals, under 

some prior beliefs or constraints on the nature of stimuli observed. Because the motion-energy 

encoding model involves a non-linear convolution, decoding corresponds to a Bayesian 

deconvolution of BOLD signals (similar in concept to the approach used in dynamic causal 



modeling [52-54]). Full Bayesian deconvolution would involve a mapping between a sequence 

of movie clips and a sequence of BOLD signals, which would cause a combinatorial explosion 

that would make decoding much more difficult. Therefore, to simplify numerical calculation we 

assume that the convolution is simply a delay in the hemodynamic response. This assumption 

allows us to convert the Bayesian deconvolution problem into a simpler problem, in which the 

causes of the current BOLD signal can be expressed in terms of stimuli presented at a fixed 

temporal delay (here four seconds). Furthermore, this assumption allows us to decode BOLD 

signals on a second by second basis, and to assess the decoding accuracy in terms of short (one 

second) movie sequences.  

The sampled prior used in this study consisted of many dynamic movies. However, in 

some cases the movie was relatively static and did not change for many seconds (e.g., long-

lasting static scenes). In preliminary studies we found that the average high posterior (AHP) 

reconstruction sometimes picked up many seconds of these static clips in a row, which visually 

biased the reconstruction. To avoid choosing similar clips too many times in succession, once we 

chose a clip from a single movie we discarded the subsequent five seconds of that movie from 

the selection process. 

In preliminary studies we also explored reconstructions in which the 100 clips with the 

highest posterior probability were weighted according to their likelihood before averaging. 

However, we found that the weighted average tended to be dominated by one or two clips and 

the resulting reconstruction was worse than the MAP reconstruction. (This likely occurs because 

the sampled movie prior is relatively sparse.) Therefore, in the current study we simply averaged 

across all 100 of the clips with the highest posterior probability. 

 

Evaluating the Accuracy of Reconstructions 

To evaluate reconstruction accuracy we quantified the structural similarity between the natural 

movies used as stimuli in the experiment and their reconstructions. Structural similarity was 

quantified by calculating the correlation between the original movie stimuli and reconstructions 

within the motion-energy feature space. Although this study is the first to assess similarity in the 

motion-energy space, other studies have assessed similarity in a static complex wavelet feature 

space [8, 55]. 

To estimate structural similarity between the test movies and the MAP reconstructions, 

we first processed the test movies with the motion-energy filter bank (up to the temporal down-

sampling stage, absent the hemodynamic coupling component used in the encoding models 

(Figure 1)). This produced a vector of motion-energy weights for each one second segment of the 

movie. The MAP reconstructions were treated the same way, giving a vector of motion-energy 

weights for each one second reconstruction. The similarity of the original movie and the MAP 

reconstruction was then taken as the motion-energy domain correlation between these two 

vectors, at a resolution of one second. The same procedure was applied to AHP reconstruction to 

obtain structural similarity between the test movies and the AHP reconstruction. In both cases a 

correlation of 1.0 indicates that the reconstruction captures all of the motion energy in the 

original stimulus, while a correlation of 0.0 indicates that the reconstruction is unrelated to the 

original stimulus. 

To test significance of the reconstructions we compared the measured correlations to the 

distribution of motion-energy filter-domain correlations between the original movies and a set of 

clips drawn at random from the natural movie prior. A Wilcoxon rank-sum test was used to 

examine statistical significance between the correlation values from the actual reconstructions 



and those from random clips. The Wilcoxon signed-rank test was also used to determine whether 

there was any significant difference in quality between MAP and AHP reconstructions. The 

chance performance was shown as the 99th percentile of the null distribution (Figure 4D, dashed 

line). 
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