1. The Physics of Quantum Information:
Basic Concepts

D. Bouwmeester, A, Zeilinger

1.1 Quantum Superposition

The superposition principle plays the most central role in all considerations of
quantumn information, and in most of the “gedanken” experiments and even
the paradoxes of quantum mechanics. Instead of studying it theoretically or
defining it abstractly, we will discuss here the quintessential experiment on
quantum superposition, the double-slit experiment (Fig. 1.1). According to
Feynman [1], the double-slit “has in it the heart of guantum mechanics”. The
essential ingredients of the experiment are a source, a double-slit assembly,
and an observation screen on which we observe interference fringes. These
interference fringes may easily be understood on the basis of assuming a wave
property of the particles emerging from the gource. It might be mentioned
here that the double-slit experiment has been performed with many different
kinds of particles ranging from photons [2], via electrons [3], to neutrons [4]
and atoms [5 . Quantum mechanically, the state is the coherent superposition

: 1

¥y = Eﬂ%) + W) (1.1)
where |¥,) and |\¥,} describe the quantum state with only slit @ or slit b open.

The interesting feature in the quantum double-slit experiment is the obser-
vation that, as confirmed by all experiments to date, the interference pattern
can be collected one by one, that is, by having such a low intensity that only
one particle interferes with itself. If this happens, we might be tempted to ask
ourselves which of the two slits a particle “really”™ takes in the experiment.
The answer from standard quantum mechanics is that it is not possible to
make any sensible statement about the question “which slit does the parti-
cle pass through?” without using the appropriate set-up able to answer that
question. In fact, if we were to perform any kind of experiment determining
through which of the two slits the particle passes, we would have to somehow
interact with the particle and this would lead to decoherence, that is, loss of
interference. Only when there is no way of knowing, not even in principle,
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Fig. 1.1. Principle of the double-slit experiment. An interference pattern arises
in an ohservation plane behind a double-slit assembly, even if the intensity of the
source ig 8o low that chere is oniy one particle at a time in the apparatus. The actual
interference pattern shown here is the experimental data obtained for a double-slit
experiments with neutrons (4],

through which slit the particle passes, do we observe interference. As a small
warning we might mention that it is not even possible to say that the particle
passes through both slits at the same time, although this is a position often
held. The problem here is that, on the one hand, this is a contradictory sen-
tence hecause a particle is a localised entity, and, on the other hand, there
is no operational meaning in such a statement. We also note that one can
have partial knowledge of the slit the particle passes at the expense of partial
decoherence.



1.2 Qubits 3

1.2 Qubits

The most fundamental entity in information science is the bit. This is a
system which carries two possible values, “0” and “17. In its classical reali-
sation the bit, which, for example could be imagined to be just a mechanical
switch, is a system which is designed to have two distingnishable states; there
should be a sufficiently large energy barrier between them that no sponta-
neous transition, which would evidently be detrimental, can occur between
the two states.

The guantum analog of a bit, the Qubit [6], therefore also has to be a
two-state system where the two states are simply called [0} and (1}, Basically
any quantum system which has at least two states can serve as a qubit, and
there are a great variety possible, many of which have already been realised
experimentally. The most essential property of quantum states when used
to encode bits is the possibility of coherence and superposition, the goneral
state being

Q) =al0) + 81, (1.2)

with |ce|? +[8]? = 1. What this means is not that the value of a qubit is some-
where between “0” and “17, but rather that the qubit is in a superposition
of both states and, if we measure the qubit we will find it with probability
le)? to carry the value “0” and with probability I3 to carry the value “17;

p(0) = [0P . p(*17) =

8. (1.3)

While by the definition of the qubit we seem to lose certainty about its prop-
erties, it is important to know that (1.2) describes a coherent superposition
rather than an incoherent mixture between “0” and “1”. The essential point
here is that for a cohereni superposition there is always a basis in which
the value of the qubit is well defined, while for an incoherent mixture it is a
mixture whatever way we choose to describe it. For simplicity consider the
specific state

’ 1 i H

Q') ﬁ(m +11). (1.4)
This clearly means that with 50% probability the gubit will be found to be
either in “0F" or “1”. But interestingly, in a basis rotated by 45° in Hilbert
space the value of the qubit is well-defined. We might simply study this
by apolying the proper transformation to the qubit. One of the most basic
transformations in quantum information science is the so-called Hadamard
transformation whose actions on a qubit are

HI0) = (10} + 1)), HILy = —=(0) = [1). (1.5

V2 V2
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Applying this to the qubit Q') above, resuits in
H|Q =10). (1.6

that is, a well-defined value of the qubit. This is never possible with an
incoherent mixture.

1.3 Single-Qubit Transformations

Insight in some of the most basic experimental procedures in quantum infor-
mation physics can be gained by investigating the action of a sinple 50/50
beamsplitter. Such beamsplitters have been realised for many different types
of particles, not only for photons. For a general beamsplitter. as shown in
Fig. 1.2, let us investigate the case of just two incoming inodes and two
outgoing modes which are arranged as shown in the figure.

For & 50/50 beamsplitter, a particle incident either from above or from
below has the same probability of 50% of emerging in either output beam,
abave or below. Then quantum unitarity, that is, the requirement that no
particles are lost if the beamsplitter is non-absorbing, implies certain phase
conditions on the action of the heamsplitter [7] with one free phase. A very
simple way to describe the action of a beamsplitter is to fix the phase relations
such that the beamsplitter is described by the Hadamard transformation of
{1.5).

Let us again assume that the incident state is the general qubit

|Q>i'n = O¢'|O>'£'n. + ‘B|1>m, . (17)

For a single incident particle this means that o is the probabiiity amplitude
to find the particle incident from above and 3 is the probability amplitude for
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Fig. 1.2. The 50/50 beamsplitter {top) and the corresponding diagram using the
Hadamard transform A (below).
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finding the particle incident from below. Then the action of the beamsplitter
results in the final state

‘Q}out =H

Qhin = = (e + B)l0)ons + o= B)|Thou) | (18)
V2

where {a + /3) is now the probability amplitude for finding the particle in the
outgoing upper beam and {a — ) is the probability amplitude for finding it
in the outgoing lower beam. For the specific case of either o = 0 or 2=0,
we find that the particle will be found with equal probability in either of the
outgoing beams. For another specific case, & = 3, we find that the particle
will definitely be found in the upper beam and never in the lower bean.

It is interesting and instructive to consider sequences of such beamsplit-
ters because they realise sequences of Hadamard transformations. For two
successive transformations the Mach-Zehnder interferometer (Fig. 1.3) with
two identical beamsplitters results.

Furthermore, the mirrors shown only serve to redirect the beams; they
are assumed to have identical action on the two beams and therefore can
e omitted in the analysis. The full action of the interferometer can now
simply be described as two successive Hadamard transformations acting on
the general incoming state of (1.7):

‘Q}out = HH|Q>-i'n = IQ}in . (19)

This results from the simple fact that double application of the Hadamard
transformation of (1.5) is the identity operation. It means that the Mach—
Zehnder interferometer as sketched in Fig. 1.3, with beamsplitters realising
the Hadamard transformation at its output, reproduces a state identical to
the input. Let us consider again the extreme case where the input consisis
of one beam only, that is, without loss of generality, let us assume o = I,
the lower beam heing empty. Then, according to (1.9), the particle will def-
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Fig. 1.3. A Mach—Zehnder interferometer (top) is a sequence of two Hadamard
transformations (bottom).
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initely be found in the upper output. Most interestingly, this is because be-
tween the two beamsplitters the particle would have been found (with the
correct relative phase) with equal probability in both beam paths. It is the
interference of the two amplitudes incident on the final beamsplitter which
results in the particle ending up with certainty in one of the outgoing beams
and never in the other.

In quantum information language, the output qubit of the empty Mach—
Zehnder interferometer will have a definite value if the input qubit also has
a definite value, and this only because between the two Hadamard transfor-
mations the value of the qubit was maximally undefined.

Another important quantum gate besides the Hadamard gate is the phase
shifter, which is introduced additionally in Fig. 1.4 into the Mach-Zehnder
interferometer. Tt operation is simply to mtroduce a phase change  to the
amplitude of one of the two beams (without loss of generality we can assume
this to be the upper beam because only relative phases are relevant). In our
notation, the action of the phase shifter can be described by the unitary
transformation

|0y = e |0y, F[1) =|1). {1.10)

Therefore the output qubit can be calculated by successive application of all
proper transformations to the input qubit:

}Q}out = Hg}HlQ)tn - (111}

We leave it to the reader to calculate the general expression for arbitrary
input qubits. We will restrict our discussion again to the case where we have
only one input namely o = 1 and 8 = 0, Le., 'QY» = [0). The final state
then becomes

HEH|0) =

M| =

(e +1)0) + (e - D|1) . (112)
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Fig. 1.4. Top: Mach-Zehnder interferometer including a phase shifter ¢ in onc
of the two beams. This completely changes the output. Bottom: The equivalent
representation with Hadamard transformations and a phase shifter gate.
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This has a very simple interpretation. First we observe by inspection of (1.12)
that for ¢ = 0 the value of the qubit is definitely “0”. On the other hand, for
¢ = the value of the qubit is definitely “1”. This indicates that the phase
shift ¢ is able to switch the output qubit between (+ and 1. In gencral, the
probahility that the output qubit has the value “0” is Py = cosz(c,// 2), and
the probability that the qubit carries the value “17 is P, = sin®{p/2).
In the present section we have discussed some of the basic notions of linear
transformation of qubits. We will now turn to entangled qubits.

1.4 Entanglement

Consider a source which emits a pair of particles such that one particle
emerges to the left and the other one to the right (see source 3 in Fig. 1.5).
The source is such that the particles are emitted with opposite momenta. If
the particle emerging to the left, which we call particle 1, is found in the up-
per beam, then particle 2 travelling fo the right is always found in the lower
beam. Conversely, if particle 1 is found in the lower beam, then particle 2 is
always found in the upper beam. In our qubit langrage we would say that
the two particles carry different bit values. Either particle 1 carries “0” and
then particle 2 definitely carries “17, or vice versa. Quantum mechanically
this is a two-particle superposition state of the form

(10l + e 0)2) (113)

The phase  is just determined by the internal properties of the source and
we assume for simplicity x¥ = 0. Equation (1.13) describes what is called an
entangled state [8] !. The interesting property is that neither of the two qubits
carries a definite value, but what is known from the quantum state is that
as soon as one of the two qubits is subject te a measurement, the result of
this measurement being completely random, the other one will immediately
be found to carry the opposite value. In a nutshell this is the conundrum of
quantum non-locality, since the two qubits could be separated by arbitrary
distances at the time of the measurement.

A most interesting situation arises when both qubits are subject to a
phase shift and to a Hadamard transformation as shown in Fig. 1.5. Then,
for detection events after both Hadamard transformations, that is, for the
case of the two-particle interferometer verification [10] for detections behind
the beamsplitters, interesting non-local correlations result which violate Bell's
inequalities [11]. Without going into the theoretical and formal details here
(for more information see Sect. 1.7), the essence of such a violation is that

! The word Entanglement is a {free) translation of the word Verschrinkung that
was introduced in 1935 by Schrédinger to characterise this special feature of
composite quantum systems [9].
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Fig. 1.5. A source cmits two qubits in an entangled state. Top: A two-particle
interferometer verification. Bottom: The principle in terms of one-photon gates

there is no possibility to explain the correlations between the two sides on
the basis of local properties of the qubits alone. The quantum correlations
between the two sides cannot be understood by assuming that the specific
detector on one given side which regisiers the particle is not influenced by the
parameter setting, that is, by the choice of the phase for the other particle.
There are many ways to express precisely the meaning of Bell’s inequali-
ties, and there are many formal presentations. Some of this discussion will
be presented in Sect. 1.7, and for the remainder we refer the reader to the
appropriate literature {e.g., Ref. [12] and references therein).

A very interesting, and for quantum computation quite relevant gener-
alisation follows if entanglement is studied for more than two qubits. For
example, consider the simple case of entangiement between three qubits,
as shown in Fig. 1.6. We assume that a source emits three particles, one
into each of the apparatuses shown, in the specific superposition, a so-called
Greenberger-HorneZeilinger {GHZ) state {13| (see also Sect. 6.3),

5000 021053 + 111 1af1})- (1.14)

This quantum state has some very peculiar properties. Again, as in two-
particle entanglement, none of the three qubits carrics any information on
ity own, none of them has a defined bit value. But, as soon as one of the
three is measured, the other two will assume a well-defined value as long as
the measurement is performed in the chosen (-1 basis. This conclusion holds
independent of the spatial separation between the three measurements.
Most interestingly, if one looks at the relations predicted by the GHZ
state (1.14) between the three measurements after passing the phase shifters
and the Hadamard transforms, a number of perfect correlations still result
for certain joint settings of the three paramesers [14], the interesting property
now being that it is not possible to understand even the perfect carrelations
with a local model. This shows that quantum mechanics is at variance with
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Fig. 1.6. Three-particle entanglement in a so-called GHZ state. Here we show only
the representation in terms of our elementsary gates, it will be straightforward for
the reader to consider the physical realisation iu a three-particle interferometer.

a classical local world view not only for the sector of statistical predictions
of the theory but also for predictions which can be made with certainty.

1.5 Entanglement and Quantum Indistinguishability

In order to understand both the nature of entanglement and ways of pro-
ducing it, one has to realise that in states of the general form (1.13) and
(1.14), we have a superposition between product states. We recall from the
discussion of the double-slit diffraction phenomenon {Sect. 1.1) that super-
position means that there is no way to tell which of the two possibilities
forming the superposition actually pertains. This rule must also be applied
to the understanding of quantum entanglement. For example, in the state

12 = —=(0h /L2 +[11[0}2) (115)
there is no way of telling whether qubit 1 carries the value “0" or “17, and
likewise whether qubif 2 carries the valuec “0”7 or *17. Yet, if one qubit is
measured the other one immediately assumes a well-defined quantumn state.
These ohservations lead us directly to the conditions of how to produce and
observe entangled quantum states.

To produce entangled quantum states, one has various possibilities.
Firstly, one can create a source which, through its physical construction,
is such that the quantum states emerging already have the indistinguishabil-
ity feature discussed above. This is realised, for example, by the decay of a
gpin-0 particle into two spin-1/2 particles under conservation of the internal
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angular momentum [15]. In this case, the two spins of the cmerging particles
have to be opposite, and, if no further mechanisms exist which permit us to
distinguish the possibilities right at the source, the emerging quantum state
is

1

V2

where, e.g. | 7)1 means particle 1 with spin up. The state (1.16) has the
remarkable property that it is rotationally invariant, Le., the two spins are
anti-parallel along whichever direction we choose to measure.

A second possibility is that a source might actually produce quantum
states of the form of the individual components in the supcrposition of (1.15),
but the states might still be distinguishable in some way. This happens, for
examnple, in type-11 parametric down-conversion [16] (Sect. 3.4.4), where along
a certain chosen direction the two emerging photon states are

Wh1p = —= (| Thl b2 — il 1), (1.16)

\H3: [V and |Vii|H)s. 1.17)

That means that either photon 1 is horizontally polarised and photon 2 is
vertically polarised, or photon 1 is vertically polarised and photon 2 is hor-
izontally polarised. Yet because of the different speeds of light for the H
and V polarised photons inside the down-conversion crystal, the time corre-
lation between the two photons is different in the two cases. Therefore, the
two terms in (1.17) can be distinguished by a time measurement and no en-
tangled state results because of this potential to distinguish the two cases.
However, in this case too one can still produce entanglement by shifting the
two photon-wave packets after their production relative to each other such
that they become indistinguishable on the basis of their positions in time.
What this means is the application of a quantum eraser technique [17] where
a marker, in this case the relative time ordering, is erased such that we obtain
quantum indistinguishability resulting in the state

1
V2
which is entangled.

A third means of producing entangled states is to project a non-entangled
state onto an entangled onc, We remark, for example, that an entangled state

is never orthogonal 1o any of its components. Specifically, consider a source
producing the non-entangled state

1031{1)2 - (1.19)

Suppose this state is now sent through a filter described by the projeciion
operator

Whie = —=(Hn|V)z + e V)i |Ha), (1.18)

P =212, (1.20)
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where |#)1q is the state of (1.15). Then the following entangled state results:

(101112 + [1)1]0}2) ;
(1.21)

W

%(\U)ﬂl)z + 1311032 ({01 {1]2 + {1[1(02) |11}z =

it is no longer normalised to unity because the projection procedure implies
a loss of qubits.

‘While each of the three methods discussed above can in principle be used
to produce outgoing entangled states, a further possibility exists to produce
entanglement upon ohservation of a state. In general, this means that we
have an unentangled or partially entangled state of some form and the mea-
surement procedure itself is such that it projects onww an entangled state, in
much the same way as discussed just above. This procedure was used, for

example, in the first experimental demonstration of GHZ entanglement of
three photons {see Sect. 6.3) [18].

1.6 The Controlled NOT Gate

Thus far, we have discussed only single-qubit gates, that is, gates which
involve one qubit only. Of greatest importance for quantum computation ap-
plications are two-qubit gates, where the evolution of one qubit is conditional
upon the state of the other qubit. The simplest of these gates is the quantum
controlled NOT gate illustrated in Fig. 1.7. The essence of the controlled
NOT gate is that the value of the so-called target qubit is negated if and
only if the control qubit has the logical value “1”, The logical value of the
control qubit does not change. The action of the quantum controiled NOT
gate can be described by the transformations

03[0 — 10}l 03¢ [0)c[Le = [0}l 1)
11760 — 136104 e/ Lhe = [1)o[0) (1.22)

where |0}, and |1}, refer to the control qubit and |0); and |1}, refer to the
target qubit. Together with the single-qubit transformations described in

.a .‘\‘
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Fig. 1.7. The controlled NOT gate is a transformation involving two qubits. The
value of the control qubit {the upper one in the figure) influences the lower one,
whose value is flipped if the upper qubit carries “1”, and not flipped if the upper
qubit carries “0”. This is equivalent to addition modulo 2.
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Sect. 1.3 the quantum controlled NOT gate can be used to realise quantum
computation networks. One interesting explicit application is the production
of two-qubit or multi-qubit entangled states using vhese gates [19].

1.7 The EPR Argument and Bell’s Inequality

Tmmediately after the discovery of modern quantum mechanics, it was re-
alised that it contains novel, counterintuitive features, as witnessed most
remarkably in the famous dialogue between Niels Bohr and Albert Einstein
[20]. While Einstein initially tried to argue that quantum mechanics is in-
consistent, he later reformulated his argument towards demonstrating that
quantum mechanics is incomplete. In the seminal paper [21], Einstein, Podol-
sky and Rosen (EPR) consider quantum systems consisting of two particles
such that, while neither position nor momentum of either particle is well
defined, the sum of their positions, that is their centre of mass, and the dif-
ference of their momenta, that is their individual momenta in the center of
mass systemn, are both preciscly defined. It then follows that a measurement
of either position or mementum performed on, say, particle 1 immediately
implies a precise position or momentum, respectively, for particle 2, without
interacting with that particle. Assuming that the two particles can be sepa-
rated hy arbitrary distances, EPR suggest that a measurement on particle 1
cannol have any actual influence on particle 2 (locality condition}; thus the
property of particle 2 must be independent of the measurement performed
on particle 1. To them, it then follows that both position and momentum can
simnultaneously be well defined properties of a guantum syster.

In his famous reply [22), Niels Bohr argues that the two particles in the
EPR case are always parts of one quantum system and thus measurement on
one particle changes the possible predictions that car be made for the whole
system and therefore for the other particle.

While the EPR-Bohr discussion was considered for a long time to be
merely philosophical, in 1951 David Bohm {13] introduced spin-entangled
systems and in 1964 John Bell [23; showed that, for such entangled systems,
measurements of correlated quantities should yield different results in the
quantum mechanical case to those expected if one assumes that the prop-
erties of the system measured are present prior to, and independent of, the
observation. Even though a number of experiments have now confirmed the
quantum predictions [24]-26), from a strictly logical point of view the prob-
lem is not closed vet as some loopholes in the existing experiments gtill make
it logically possible, at least in principle, to uphold a local realist world view
[27].

Let us briefly present the line of reasoning that leads to an inequality
equivalent to the originai Bell inequality. Consider a source emitting two
qubits (Fig. 1.8) in the entangled state
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Fig. 1.8. Correlation measurements between Alice's and Bob’s detection events far
different choices for the detection bases (indicatcd by the angles o and 2 for the
orientation of their polarising beamsplitters, PBS) lead to the violation of Bell’s
inequalities.

i
|6+ )10 = :E(\HMHh—i-\V)llv)z]- (1.23)

Omne qubit is sent to Alice (to the left in Fig. 1.8), the other one to Bob {to
the right). Alice and Bob will perform polarisation measurements using a
polarising beamsplitter with two single-photon detectors in the output ports.
Alice will obtain the measurement resuls “0” or “1”, corresponding to the de-
tection of a qubit by detector 1 or 2 respectively, cach with equal probability.
This statement ig valid in whatever polarisation basis she decides to perform
the measurement, the actual results being completely random. Yet, if Bob
chooses the same basis, he will always obtain the same result. Thus, following
the first step of the EPR reasoning, Alice can predict with certainty what
Bob's result will be. The second step employvs the locality hypothesis, that
i, the assumption that no physical influence can instantly go from Alice’s
apparatus to Bob’s. and therefore Bob’s measured result should only depend
on the properties of his qubit and on the apparatus he chose. Combining
the two steps, John Bell investigated possible correlations for the case that
Alice and Bob choose detection bases which are at obligue angles. For three
arbitrary angular orlentations o, 7. v, one can see [28| that the following
inequality must he fulfilled:

N(lg, 15) < N{la, 14) + N(15,0,), (1.24)
where
. Ny 5 .
Nilg,lg) = — Cos (o — 3) (1.25)

i8 the quantum-mechanical prediction for the number of cases where Alice
obtaing “1" with her apparatus at orientation o and Bob achieves “17 with
orientation 3, and Ny is the number of pairs emitted by the source. The
inequality iz violated by the quantum-mechanical prediction if we choose, for
example. the angles (o — 3) = (8 — =) = 30°. The violation implies that
at least one of the assumptions entering Bell’s inequality must be in conflict
with quantum mechanics. This ig usually viewed as evidence for non-locality,
though that is by nc means the only possible explanation.
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1.8 Comments

As recently as a decade ago, the issues discussed here were mainly considered
to be of a philosophical nature, though very relevant ones in our attempts
to understand the world around us and our role in it. In the last few years,
very much to the surprise of most of the early researchers in the field, the
basic concepts of superposition and quantum entanglement have turned out
to be key ingredients in novel quantum communication and guantum com-
putation schemes. Here we have given only a condensed introduction. More
details are coutained in the various chapters of this book. Further informa-
tion can alse be found on the world wide web, for example at www.qubit.org
or www.quantum.at with many links to other relevant sites.



